樣條函數(shù)或任何其他插值函數(shù)可用于鏈接一維路徑以形成發(fā)射線圈802和接收線圈804及接收線圈806的形狀。通過應用合適的函數(shù)可以更高效地實現(xiàn)接收線圈的變形。例如,在旋轉傳感器中,該函數(shù)將是半徑的函數(shù)。在步驟1102中,在算法712中輸入和接收當前線圈設計布局、仿真結果以及在一些情況下在步驟706中提供的比較。然后可以使用非線性編程求解器來找到使給定目標函數(shù)小化的發(fā)射線圈802和接收線圈804及接收線圈806的形狀。目標函數(shù)由三部分形成,如圖11所示。在步驟1103中,建立如圖14所示的外部阱1402和外部阱1404的寬度,以小化沒有目標時的偏差。在步驟1104中,將檢測到的位置(即,電角度)與理想位置之間的均方根誤差(rms)小化。這不會對電壓vcos和vsin相對于位置的形狀產(chǎn)生任何影響。在步驟1106中,算法712評估作為位置的函數(shù)的vcos和vsin的仿真值和具有相等幅度的兩個正弦曲線之間的差的rms,以便約束輸出電壓的形狀。在一些實施例中,經(jīng)重新設計的接收線圈804和接收線圈806的形狀可以在步驟1104和步驟1106兩者中收斂。在一些實施例中,步驟1104和步驟1106可以使用元啟發(fā)式優(yōu)化求解器。然而,元啟發(fā)式優(yōu)化求解器往往很慢。因此,在一些實施例中。空氣傳感器線圈,無錫東英電子有限公司。汽車傳感器線圈效果

傳感器實際上是一種功能塊,其作用是將來自外界的各種信號轉換成電信號。為了對各種各樣的信號進行檢測、控制,就必須獲得盡量簡單易于處理的信號,這樣的要求只有電信號能夠滿足。電信號能較容易地進行放大、反饋、濾波、微分、存貯、遠距離操作等。現(xiàn)代傳感器制造業(yè)的進展取決于用于傳感器技術的新材料和敏感元件的開發(fā)強度。傳感器開發(fā)的基本趨勢是和半導體以及介質材料的應用密切關聯(lián)的。隨著智能時代逐漸到來,傳感器變得更加不可替代。微型化、數(shù)字化、智能化的傳感器迅速地被普及,進而改變我們的生活方式。近期,儀器儀表市場涌現(xiàn)出不少先進的傳感器設備,刷新著市場應用體系。廣東傳感器線圈線圈傳感器線圈推薦,無錫東英電子有限公司值得信賴,詳細可訪問我司官網(wǎng)查看!

如下面更詳細地討論的,在一些實施例中,形成發(fā)射線圈、線圈和連接線的跡線用一維金屬導線表示。一些實施例可以使用更精細的仿真算法,例如塊體積元素(brickvolumetricelement)、部分元素等效電路(peec)或基于體積積分公式的方法,其可以提供對由實際三維電流承載結構所產(chǎn)生的磁場進行估計的進一步的提高。金屬目標通常可以由導電表面表示。如圖10a所示,算法704在步驟1002處開始。在步驟1002中,獲得描述tx線圈和rx線圈、目標的幾何形狀、氣隙規(guī)范和掃描規(guī)范的pcb跡線設計。這些輸入?yún)?shù)例如可以由算法700提供,要么在算法700的輸入步驟702期間通過初始輸入,要么從來自算法700的線圈調整步驟712的經(jīng)調整的線圈設計來提供,如圖7a所示。算法704然后進行到步驟1003。在步驟1003中,算法704以在步驟1002中設置的頻率參數(shù)計算發(fā)射線圈(tx)的跡線的電阻r和電感l(wèi)。在不存在目標的情況下執(zhí)行計算,以給出品質因數(shù)的估計q=2πfl/r。在步驟1004中,設置參數(shù)以仿真特定線圈設計的性能和在步驟1002中接收的線圈設計的氣隙,其中金屬目標如在掃描參數(shù)中定義的被設置在現(xiàn)行位置。如果這是次迭代,則將現(xiàn)行位置設置為在步驟1002中接收到的數(shù)據(jù)中所定義的掃描的起點。否則。
可以使用數(shù)百甚至數(shù)千次仿真。因此,存在一些模型簡化,這盡管基本上不影響仿真的準確性,但可以提高速度。例如,如果每次仿真需要10秒鐘來完成,則使用100次迭代的優(yōu)化可能需要16分鐘。然而,如果每次仿真需要10分鐘完成,則同一優(yōu)化可能需要16個小時來完成。在一些實施例中使用的有效簡化是用一維導線模型來表示用于形成發(fā)射線圈和線圈的導電跡線。在與一維導線模型偏離嚴重的情況下,考慮一個具有35μm的高度和。該矩形跡線可以由例如銅的任何非磁性導電材料形成。其他金屬也可以用來形成跡線,但銅更為典型。對于厚度為趨膚深度的大約兩倍的跡線部分,矩形跡線中流動的電流的電流密度可以是非常均勻的。對于銅,在5mhz的頻率下的趨膚深度為30μm。因此,對于上述基準矩形跡線,跡線內的電流密度將是基本上均勻的。圖10b示出由承載電流的一維導線1020生成的場。如果在兩個結構中流動的電流相同,則由導線1020或由一定直徑的直的圓柱體生成的場沒有差異。然而,圖10c示出在基準跡線1022周圍生成的場,基準跡線1022是上述由銅形成的并且具有35μm的高度和。如圖10c所示,即使在小于1mm的短距離處,該場看起來也與圖10b中的由導線1020所生成的場相同。傳感器線圈的線圈繞制技術對產(chǎn)品性能至關重要。

為了討論的目的,圖10f示出圖8a和圖8b所示的線圈設計800的示例,其中線圈1028和線圈1026分別與線圈804和線圈806的跡線的一維近似相對應。為了簡化圖示,在圖10f中未示出發(fā)射線圈802,但是發(fā)射線圈802的跡線也通過一維導線跡線近似。在仿真了來自位置定位系統(tǒng)800的目標線圈802的電磁場之后,然后在圖10a所示的算法704的示例的步驟1008中,仿真金屬目標1024的渦電流,并且確定從那些渦電流產(chǎn)生的電磁場。在一些實施例中,金屬目標1024中的感應渦電流是通過原始邊界積分公式來計算的。金屬目標1024通常可以被建模為薄金屬片。通常,金屬目標1024很薄,為35μm至70μm,而橫向尺寸通常以毫米進行測量。如上文關于導線跡線所討論的,當導體具有小于在特定工作頻率下磁場的穿透深度的大約兩倍的厚度時,感應電流密度在整個層厚度上基本上是均勻的。因此,可以將金屬目標1024的細導體建模為感應渦電流與該表面相切的表面。傳感器線圈的自感和互感特性需要精確測量。江西傳感器線圈產(chǎn)品推薦
高速傳感器線圈芯,無錫東英電子有限公司。汽車傳感器線圈效果
例如,目標的角位置可以被計算為:角位置=arctan(vsin/vcos)。圖2e示出了這一點,并且示出vcos和vsin的正弦形式以及根據(jù)vcos和vsin的值得出的對金屬目標124的位置的確定。在線性位置定位系統(tǒng)中,可以通過知道線圈104的跡線的正弦形式的波長(即,正弦定向線圈112的跡線和余弦定向線圈110的跡線的峰距區(qū)域之間的間隔),通過角位置來確定線性位置。在角位置定位系統(tǒng)中,正弦定向線圈112和余弦定向線圈110可以被布置為使得該角位置可以等于關于金屬目標124的旋轉的金屬目標124的實際角位置。重要的是要注意指示位置定位傳感器100的理想操作的以下條件。在那些條件中,發(fā)射器線圈106的形狀不重要,只要其覆蓋放置線圈104的區(qū)域即可。此外,線圈104的形狀等于完美的幾何重疊的正弦和余弦。另外,金屬目標124的形狀對工作原理沒有影響,只要目標的區(qū)域覆蓋線圈104的總區(qū)域的一部分即可。理想的一組線圈和理想的金屬目標的這些條件從未被滿足。在實際系統(tǒng)中,情況大不相同。非理想性導致金屬目標124的位置的確定的不準確性。導致位置確定的不正確性的問題包括發(fā)射線圈106中生成的電磁場的不均勻。汽車傳感器線圈效果